
1. Introduction

Planning manipulations on cloth objects is challenging

due to such objects’ large state spaces and complex dynam-

ics. Manipulation is further complicated by material varia-

tion. Material properties cannot reliably be assessed from

passive observation of an object, but can have significant

impact on manipulation outcomes. Recent approaches

have used trained models of the cloth dynamics for gener-

ating manipulations. If there is a mismatch in material

properties between training data and test conditions, ma-

nipulation accuracy will deteriorate. This is hard to avoid

when training on simulation data. Precise measurement of

the material properties to match simulation to reality is

challenging, and must be repeated for different fabrics.

This is impractical and error-prone.

The alternative we explore here is to cover a region of

the material property space, and add functionality for esti-

mating material properties during manipulation. This strat-

egy avoids the need to measure and prepare separate data

for different fabrics, as well as the need to explicitly pro-

vide fabric information to the system at run-time.

Work addressing material variation in the context of

cloth manipulation remains scarce, but notable examples

are [1] and [2]. In [1], folding of a fabric strip of unknown

stiffness is performed using a Reinforcement Learning ap-

proach. In [2], bending and stretching stiffness are mod-

elled as parametric biases, and estimated during dynamic

manipulation (spreading a sheet) with variable-stiffness

joints. Our approach to material estimation is similar, but

we focus on folding instead of spreading, model shape pre-

dictions and material properties probabilistically, expand

the repertoire of estimated properties, and address variable

goals. However, in contrast to [2], our work is presently

limited to simulation experiments, manipulation in our test

scenarios is near-static, and joint stiffness is not considered.

2. System

We consider the problem of automatically manipulating

a cloth object into a goal shape set at run-time. We assume

a dual-armed robot as manipulator, capable of grasping

two points of the object, and moving them freely within the

workspace. A manipulation consists of the robot lifting the

grasp points, moving them along a 180° arc-like trajectory,

and releasing them. In our experiments, we use the task of

folding a T-shirt approximately in two as test case (see Fig-

ure 1 for examples). In the present paper we evaluate ma-

nipulation generation with material property knowledge of

varying uncertainty, and property estimation during execu-

tion of a given manipulation trajectory. Experiments in this

work are in simulation, so we have direct access to the

mesh. Application to real cloth requires functionality for

extracting mesh representations from observations. We ad-

dressed this challenge elsewhere [4][5]).

2.1. Manipulation Trajectory Representation

Manipulations lift, displace, lower, and release the

grasped vertices of the object. Hence, trajectories should

be globally arc-like, while allowing flexibility at fine gran-

ularity. The positions of the grasped points at time 𝑡 are

denoted (𝑔𝑡
1, 𝑔𝑡

2) , and derived from a set of variables:

(𝜃𝑡 , 𝑟𝑡 , 𝜑𝑡 , 𝑎𝑡 , 𝑔0
1, 𝑔0

2, 𝒅). Points 𝑔0
1 , 𝑔0

2 are the original

grasp positions, and 𝒅 is a 2D vector indicating displace-

ment of the centre point between the grasp points in the XY

plane. These values are given and fixed per manipulation.

They may be set by the user or generated by a higher-level

planning process, as proposed elsewhere [5]. Manipulation

is controlled using the control variables 𝜃𝑡 , 𝑟𝑡 , 𝜑𝑡 , 𝑎𝑡. Fig-

ure 2 illustrates how (𝑔𝑡
1, 𝑔𝑡

2) are found. Initial values for

𝑟0 and 𝑎0 are derived from 𝑔0
1 , 𝑔0

2 and 𝒅 , while 𝜃0

and 𝜑0 are initialised to zero.

A trajectory is described by a sequence of deltas for the

control variables. By applying the deltas in order to the

control variables and recalculating (𝑔𝑡
1, 𝑔𝑡

2), we obtain the

trajectory. We assume a control update interval of 12

Cloth Manipulation with Estimation of Material Properties
○Solvi Arnold (Shinshu University) Kimitoshi Yamazaki (Shinshu University)

Fig. 1. Manipulation examples. Top: initial shape, final

shape, and trajectory of one example. Bottom: final shapes

of four different examples.

Fig. 2. Deriving the positions of grasp points (𝑔𝑡

1, 𝑔𝑡
2) at

time 𝑡 from the high-level manipulation specification

(𝑔0
1, 𝑔0

2, 𝒅) and control parameters (𝜃𝑡 , 𝑟𝑡 , 𝜑𝑡, 𝑎𝑡). Drop

height ℎ is a fixed system parameter. Rotation around axis

𝑇 (perpendicular to 𝒅′) progresses the manipulation.

simulation frames, and we refer to a run of 12 frames as a

segment. For the frames within a segment, we repeat the

same deltas. Trajectories themselves are regularly regener-

ated during manipulation to incorporate shape observa-

tions, so in each manipulation session there exists a se-

quence of trajectories. A manipulation trajectory of 𝑘

segments, at generation round 𝑖 in a manipulation session,

is denoted as follows.

𝑚𝑖 = ⟨∆𝜃𝑖,𝑗 , ∆𝑟𝑖,𝑗 , ∆𝜑𝑖,𝑗, 𝛥𝑎𝑖,𝑗
𝑥 , 𝛥𝑎𝑖,𝑗

𝑦
|𝑗 ∈ [1, 𝑘]⟩ (1)

Note that 𝑎 denotes a point in the XY plane, and thus

consists of two coordinates.

2.2. Material Property Representation

We let 𝑃 = {𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛, 𝑏𝑒𝑛𝑑, 𝑠𝑡𝑟𝑒𝑡𝑐ℎ, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠}

represent the set of material properties under consideration.

We denote the actual value of 𝑝 ∈ 𝑃 as 𝑞𝑝, and represent

knowledge about property 𝑝 ∈ 𝑃 at segment 𝑖 as �̂�𝑖
𝑝

=

(𝑐𝑖
𝑝

, 𝑤𝑖
𝑝

), where 𝑐𝑖
𝑝

and 𝑤𝑖
𝑝

 define the centre and width

of a truncated continuous uniform distribution on the [0,1]

interval as follows:

𝑈[𝑚𝑎𝑥(𝑐𝑖
𝑝

−𝑤𝑖
𝑝

,0),𝑚𝑖𝑛(𝑐𝑖
𝑝

−𝑤𝑖
𝑝

,1)]
(2)

Hence material knowledge is represented as the material

property value lying within a specified range. Absence of

knowledge can be expressed as (𝑐𝑖
𝑝

= 0.5, 𝑤𝑖
𝑝

= 1.0) ,

whereas absolute certainty about a property’s value can be

expressed with 𝑤𝑖
𝑝

= 0.0.

2.3. Neural Network

The neural network consists of encoder, prediction, and

decoder modules. We omit description of the architecture

here, but note that it closely follows [4], expect that the

layer count in the prediction module is reduced to 5.

The compound network takes as input 1) shape obser-

vations in mesh format, 2) manipulation trajectories, and

3) material property knowledge, and outputs shape predic-

tion in probabilistic mesh format. For each vertex 𝑣 in the

cloth mesh, the net outputs tuple ⟨𝜇𝑥
𝑣 , 𝜇𝑦

𝑣 , 𝜇𝑧
𝑣 , 𝜎𝑥

𝑣 , 𝜎𝑦
𝑣 , 𝜎𝑧

𝑣⟩

defining a multivariate normal distribution with means

𝜇𝑥
𝑣 , 𝜇𝑦

𝑣 , 𝜇𝑧
𝑣 and a diagonal covariance matrix with values

𝜎𝑥
𝑣 , 𝜎𝑦

𝑣, 𝜎𝑧
𝑣 on its diagonal.

3. Data Generation & Network Training

We generate a set of manipulation examples using the

ARGUS cloth simulator [6]. The scenario we test here is

folding a T-shirt approximately in two from left to right

using a dual-armed manipulator. With the T-shirt laid out

flat on a work surface, we set 𝑔0
1, 𝑔0

2 to grasp the T-shirt

by the top corner of the left sleeve and the bottom left cor-

ner of the T-shirt body. Displacement vector 𝒅 is set to

point rightwards, and its length is tuned so that performing

manipulation with fixed control input 𝑚𝑡 =

(𝛥𝜃𝑡 , 𝛥𝑟𝑡 , 𝛥𝜑𝑡 , 𝛥𝑎𝑡
𝑥 , 𝛥𝑎𝑡

𝑦
) = (1,0,0,0,0) results in the

shirt being folded approximately in two. For each

manipulation example, the control sequence 𝑚 and mate-

rial properties 𝑞𝑝, 𝑝 ∈ 𝑃 are randomised and recorded.

ARGUS uses high-dimensional specifications of bend-

ing/stretching stiffness. For simplicity, we define a basic

anisotropic material, and let our bending/stretching stiff-

ness parameters act as multipliers on this fabric specifica-

tion. We denote the elements of each manipulation exam-

ple as follows: 𝑠𝑖 denotes to the 𝑖th shape in a shape se-

quence (i.e. the shape at segment 𝑖), 𝑚𝑖 denotes to the

manipulation input at segment 𝑖, and 𝑞 denotes the ma-

terial properties for the example. Manipulation examples

are shown in Figure 1.

We train the neural network end-to-end on batches of

manipulation examples. Ranges for all material properties

are normalised to the [0,1] range. During batch generation,

we randomly generate instances of material property

knowledge �̂�𝑝 = (𝑐𝑝, 𝑤𝑝) from the actual property val-

ues 𝑞𝑝 as follows.

𝑤𝑝 = 𝑅(0,1)2 𝑐𝑝 = 𝑞𝑝 +
𝑅(−𝑤𝑝 , 𝑤𝑝)

2
(3)

Here 𝑅(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) uniformly generates a random

value in [𝑙𝑜𝑤, ℎ𝑖𝑔ℎ]. This results in a property knowledge

representation that is true for the example, and varies in its

level of uncertainty. Material input is constant over seg-

ments, so we omit the segment index. The starting segment

for each example in a batch is randomised in order to learn

to predict form any point in the trajectory. Training loss is

the negative log-likelihood. Weights are updated using the

SignSGD update rule [7], with automatic learning rate ad-

justment.

4. Trajectory Planning

A manipulation session starts with generation of the in-

itial manipulation trajectory. We then execute the first seg-

ment, observe the resulting cloth shape, and regenerate the

remainder of the trajectory. This process repeats every seg-

ment, until the release point of the (then-current) trajectory

is reached, at which point the cloth is released and left to

settle. During trajectory generation, we run multiple in-

stances of the generation process in parallel. This produces

a set of candidate solutions, from which we select the so-

lution with the best residual loss. Below we explain the

process in more detail.

Given shape 𝑠𝑖 at the start of segment 𝑖, goal shape 𝑠∗,

and material property information �̂�𝑖 = ⟨(𝑐𝑖
𝑝

, 𝑤𝑖
𝑝

)|𝑝 ∈ 𝑃⟩,

we generate a 𝑘-step manipulation sequence 𝑚𝑖 for pro-

ducing 𝑠∗ from 𝑠𝑖 as follows. We assume to have some

initial sequence 𝑚𝑖
𝑖𝑛𝑖𝑡 of length (segment count) 𝑏 ≥ 𝑘,

which may be randomly initialised or initialised from a

preceding step of the process. For the initial trajectory, we

use the default trajectory ⟨𝑚𝑖,𝑗 = (2,0,0,0,0)|𝑗 ∈ [1, 𝑏]⟩

as basis, and add Gaussian noise independently for each

instance of the trajectory generation process. When regen-

erating the trajectory, we start with the preceding trajectory

minus its first segment (which was executed), and again

add Gaussian noise independently for each instance of the

generation process. The number of segments in the manip-

ulation sequence will be automatically adjusted within

range [1, 𝑏] by the generation process, so 𝑏 should be

set with some leeway. For the initial trajectory, we set 𝑏 =

25. For subsequent generation rounds, we set 𝑏 to the

length of the preceding trajectory plus 5.

We set up the neural network with the number of passes

through its prediction module set to 𝑏. We input 𝑠𝑖, �̂�𝑖,

and 𝑚𝑖 into the network, and perform forward propaga-

tion to obtain a sequence of probabilistic shape predictions

�̂�𝑖,1:𝑏
𝑚 = ⟨�̂�𝑖,𝑗

𝑚|𝑗 ∈ [1, … , 𝑏]⟩. We calculate the planning loss

as follows.

𝐿𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔(�̂�𝑖,1:𝑏
𝑚 , 𝑠∗) = 𝑀𝑆𝐸(�̂�𝑖,𝑢

𝑚 , 𝑠∗) + 𝛽 ∙ 𝐿𝑎𝑐𝑡(𝑚) (4)

𝑢 = {
argmin

𝑘
[𝜃𝑖,𝑘 ≥ 180] 𝑖𝑓 𝜃𝑖,𝑏 ≥ 180

𝑞 𝑒𝑙𝑠𝑒
(5)

Here 𝑀𝑆𝐸 is the mean squared error, 𝜃𝑖,𝑘 is the

value of 𝜃 at segment 𝑘 (i.e. the sum of all ∆𝜃 up to

segment 𝑘), 𝐿𝑎𝑐𝑡 is a loss promoting smooth, forward

progressing trajectories, and 𝛽 is a system parameter

balancing the loss terms. 𝑀𝑆𝐸 here ignores the 𝜎𝑥,𝑦,𝑧

elements of the probabilistic shape prediction, using the

𝜇𝑥,𝑦,𝑧 variables as regular coordinates.

By backpropagating the planning loss through the net-

work to the manipulation inputs, we obtain gradients for

all elements of 𝑚𝑖. We update 𝑚𝑖 on basis of these gra-

dients, using the rProp- update rule [8]. We repeat this up-

date procedure until 𝑚𝑖 stabilises. As noted, multiple ini-

tialisations of 𝑚𝑖 are optimised in parallel, and we select

the solution that minimises the residual planning loss.

Note that the planning loss selects one shape �̂�𝑖,𝑢
𝑚 from

�̂�𝑖,1:𝑏
𝑚 for the 𝑀𝑆𝐸 calculation. The selected shape is the

shape obtained right after the segment where the 𝜃 angle

(which tracks progress along the trajectory arc) reaches

180°, i.e. the shape following release of the cloth. Where

this point is reached depends on the control input, and can

therefor change as the control input is updated. Segments

after the cloth release point are meaningless, so we truncate

them from the final solution. Hence, the number of seg-

ments in the returned solution is adjusted automatically.

We evaluate trajectory generation for various levels of

knowledge about the cloth material, varying 𝑤𝑝 from 0.1

to 1.0. For each case tested, 𝑐𝑝 is set to a random value

drawn uniformly from [𝑞𝑝 − 𝑤𝑝 2⁄ , 𝑞𝑝 + 𝑤𝑝 2⁄] . Goal

shapes are sourced from the training data set. Figure 3

shows results. For low uncertainty (𝑤𝑝 = 0.1), the median

error is 6.9mm. Although the difference is slight, mean and

median error increase with 𝑤𝑝 , indicating that material

property knowledge contributes to trajectory generation

accuracy. We also observe that higher uncertainty pro-

duces a larger spread of error values.

5. Material Estimation

After manipulating the cloth for 𝑖 ≥ 1 steps, we can

estimate the material property information, using the ma-

nipulation history 𝑚0:𝑖−1 = ⟨𝑚𝑗|𝑗 ∈ [0, 𝑖)⟩ and the se-

quence of shape observations 𝑠0:𝑖 obtained over the

course of that history. The procedure is similar to trajectory

generation, but instead of fixing material property input

and optimising the control inputs to maximise similarity

between predicted outcome and goal shape, we fix the con-

trol input 𝑚0:𝑖−1, and optimise the material knowledge in-

put �̂�𝑖 to maximise compatibility between the predicted

shape sequence and the observed shape sequence.

If we have no preceding estimate of �̂�𝑖, as may often be

the case when 𝑖 = 1, we initialise �̂�𝑖 to the “no infor-

mation” valuation, i.e. �̂�𝑖 = (𝑐𝑖
𝑝

, 𝑤𝑖
𝑝

) = (0.5, 1.0), 𝑝 ∈ 𝑃.

Otherwise, we initialise with the previous estimate. In both

cases we apply Gaussian noise to the initialisation.

We set up the prediction network with the number of

passes through the prediction module set to 𝑖. We run pre-

diction with 𝑠0 as state input, 𝑚0:𝑖−1 as control input,

and current material estimate �̂�𝑖 as material information

input. This yields a sequence of probabilistic shape predic-

tions �̂�1:𝑖
𝑚 . We then calculate the material estimation loss

as the negative log-likelihood of the observed sequence

w.r.t. the predicted sequence:

Fig. 3. Left: accuracy of trajectory planning for various lev-

els of material uncertainty. Unit: millimetres. Error is meas-

ured as mean distance between goal position and obtained

position over all vertices in the mesh. Numbers at top of

graph indicate outliers. The same 𝑤𝑝 value is used for all

material properties. Right: example manipulation outcomes.

𝐿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(�̂�1:𝑖
𝑚 , 𝑠1:𝑖) = 𝑁𝐿𝐿(�̂�1:𝑖

𝑚 , 𝑠1:𝑖) (6)

By backpropagating the estimation loss through the net-

work to the material inputs, we obtain gradients for all el-

ements of �̂�𝑖. We update �̂�𝑖 on basis of these gradients,

using the rProp- update rule [8]. We repeat this procedure

until �̂�𝑖 stabilises. As before, multiple initialisations are

optimised in parallel, and we finally select the candidate

solution that minimises the residual estimation loss.

We evaluate estimation ability by replaying manipula-

tion examples from the training data set, and running ma-

terial estimation with the manipulation history and shape

observation history after each manipulation segment. Ta-

ble 1 reports quantitative results of estimation after the fi-

nal segment, as mean, standard deviation, and median of

‖𝑐𝑝 − 𝑞𝑝‖ and 𝑤𝑝 , and failure rates. The value of 𝑐𝑝

lies near 𝑞𝑝 on average and the 𝑤𝑝 is fairly well con-

strained. One problem we observe is that for cases where

𝑐𝑝 closely approximates 𝑞𝑝 , 𝑤𝑝 can drop to zero (i.e.

the system overshoots to zero when a small 𝑤𝑝 would be

appropriate). Figure 4 shows examples of estimation de-

velopment over two cases. Note that not all manipulation

trajectories allow identification of all material properties; a

manipulation that is not affected much by a given property

will not be informative with regard to that property.

Probabilistic representation of material properties allows

the system to properly express such absence of knowledge.

6. Conclusions & Future Work

We proposed a cloth manipulation system capable of

generating manipulation trajectories and inferring material

properties during manipulation. We showed that good ac-

curacy is obtained for both functionalities. However, the

impact of material knowledge in our test case is small, lim-

iting potential trajectory planning accuracy gains from ma-

terial inference. We plan to explore more complex folding

scenarios in which material properties have a larger impact.

A limitation of the results presented here is that trajectory

generation and material estimation are evaluated sepa-

rately. The next steps for this work will be to integrate

these processes to operate in parallel, and integrate the sys-

tem with robot hardware.

Acknowledgements

This work is partly supported by NEDO and JSPS KA-

KENHI Grant Number JP20H04262.

References

[1] V. Petrík, V. Kyrki: Feedback-based Fabric Strip Folding.

IROS 2019.

[2] K. Kawaharazuka, A. Miki, M. Bando, K. Okada, M.

Inaba: Dynamic Cloth Manipulation Considering Variable

Stiffness and Material Change Using Deep Predictive

Model With Parametric Bias. Front. Neurorobot.

16:890695., 2022.

[3] D. Tanaka, S. Arnold, K. Yamazaki: Disruption-Resistant

Deformable Object Manipulation on basis of Online Shape

Estimation and Prediction-Driven Trajectory Correction.

IEEE RA-L 6(2): 3809-3816, 2021.

[4] S. Arnold, K. Yamazaki: Cloth Manipulation Planning on

Basis of Mesh Representations with Incomplete Domain

Knowledge and Voxel-to-Mesh Estimation.

arXiv:2103.08137, 2021.

[5] S. Arnold, K. Yamazaki: Fast and Flexible Multi-Step

Cloth Manipulation Planning using an Encode-Manipulate-

Decode Network (EM*D Net). Front. in Neurorobot., vol.

13, 2019.

[6] G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G.

Brown, L. Boissieux, J. Li: An Implicit Frictional Contact

Solver for Adaptive Cloth Simulation. ACM Transactions

on Graphics (Proc. SIGGRAPH), 2018.

[7] J. Bernstein, Y. Wang, K. Azizzadenesheli, A. Anandkumar:

signSGD: Compressed Optimisation for Non-Convex

Problems. arXiv:1802.04434, 2018.

[8] C. Igel, M. Hüsken: Improving the Rprop Learning

Algorithm. Proceedings of the Second International

Symposium on Neural Computation, NC'2000, 2000.

Fig. 4. Examples of iterative material estimation. Dotted

black line: 𝑞𝑝. Shaded area: estimated region, (𝑐𝑝 and

𝑐𝑝 ± 𝑤𝑝 2⁄ marked with coloured lines). All material prop-

erties normalised to the [0,1] range.

Table 1: Material estimation results (mean, SD, median).

𝑁 = 50 Bend Friction Stretch Thickness

‖𝑐𝑝 − 𝑞𝑝‖
.061 (.053)

median: .044

.043 (.034)

median: .034

.049 (.033)

median: .044

.044 (.032)

median: .037

𝑤𝑝
.28 (.18)

median: .27

.29 (0.17)

median: .28

.28 (.17)

median: .25

.25 (.16)

median: .24

Failure* 8% 2% 2% 0%

* Failure criterion: ‖𝑐𝑝 − 𝑞𝑝‖ > 0.1 & 𝑐𝑝 ∉ [𝑐^𝑝 − 𝑤^𝑝 ⁄ 2, 𝑐^𝑝 + 𝑤^𝑝 ⁄ 2].

