
1. Introduction 

Planning manipulations on cloth objects is challenging 

due to such objects’ large state spaces and complex dynam-

ics. Manipulation is further complicated by material varia-

tion. Material properties cannot reliably be assessed from 

passive observation of an object, but can have significant 

impact on manipulation outcomes. Recent approaches 

have used trained models of the cloth dynamics for gener-

ating manipulations. If there is a mismatch in material 

properties between training data and test conditions, ma-

nipulation accuracy will deteriorate. This is hard to avoid 

when training on simulation data. Precise measurement of 

the material properties to match simulation to reality is 

challenging, and must be repeated for different fabrics. 

This is impractical and error-prone.  

The alternative we explore here is to cover a region of 

the material property space, and add functionality for esti-

mating material properties during manipulation. This strat-

egy avoids the need to measure and prepare separate data 

for different fabrics, as well as the need to explicitly pro-

vide fabric information to the system at run-time. 

Work addressing material variation in the context of 

cloth manipulation remains scarce, but notable examples 

are [1] and [2]. In [1], folding of a fabric strip of unknown 

stiffness is performed using a Reinforcement Learning ap-

proach. In [2], bending and stretching stiffness are mod-

elled as parametric biases, and estimated during dynamic 

manipulation (spreading a sheet) with variable-stiffness 

joints. Our approach to material estimation is similar, but 

we focus on folding instead of spreading, model shape pre-

dictions and material properties probabilistically, expand 

the repertoire of estimated properties, and address variable 

goals. However, in contrast to [2], our work is presently 

limited to simulation experiments, manipulation in our test 

scenarios is near-static, and joint stiffness is not considered. 

2. System 

We consider the problem of automatically manipulating 

a cloth object into a goal shape set at run-time. We assume 

a dual-armed robot as manipulator, capable of grasping 

two points of the object, and moving them freely within the 

workspace. A manipulation consists of the robot lifting the 

grasp points, moving them along a 180° arc-like trajectory, 

and releasing them. In our experiments, we use the task of 

folding a T-shirt approximately in two as test case (see Fig-

ure 1 for examples). In the present paper we evaluate ma-

nipulation generation with material property knowledge of 

varying uncertainty, and property estimation during execu-

tion of a given manipulation trajectory. Experiments in this 

work are in simulation, so we have direct access to the 

mesh. Application to real cloth requires functionality for 

extracting mesh representations from observations. We ad-

dressed this challenge elsewhere [4][5]). 

2.1. Manipulation Trajectory Representation 

Manipulations lift, displace, lower, and release the 

grasped vertices of the object. Hence, trajectories should 

be globally arc-like, while allowing flexibility at fine gran-

ularity. The positions of the grasped points at time 𝑡 are 

denoted (𝑔𝑡
1, 𝑔𝑡

2) , and derived from a set of variables: 

(𝜃𝑡 , 𝑟𝑡 , 𝜑𝑡 , 𝑎𝑡 , 𝑔0
1, 𝑔0

2, 𝒅). Points 𝑔0
1 , 𝑔0

2  are the original 

grasp positions, and 𝒅 is a 2D vector indicating displace-

ment of the centre point between the grasp points in the XY 

plane. These values are given and fixed per manipulation. 

They may be set by the user or generated by a higher-level 

planning process, as proposed elsewhere [5]. Manipulation 

is controlled using the control variables 𝜃𝑡 , 𝑟𝑡 , 𝜑𝑡 , 𝑎𝑡. Fig-

ure 2 illustrates how (𝑔𝑡
1, 𝑔𝑡

2) are found. Initial values for 

𝑟0  and 𝑎0  are derived from 𝑔0
1 , 𝑔0

2  and 𝒅 , while 𝜃0 

and 𝜑0 are initialised to zero. 

A trajectory is described by a sequence of deltas for the 

control variables. By applying the deltas in order to the 

control variables and recalculating (𝑔𝑡
1, 𝑔𝑡

2), we obtain the 

trajectory. We assume a control update interval of 12 
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Fig. 1. Manipulation examples. Top: initial shape, final 

shape, and trajectory of one example. Bottom: final shapes 

of four different examples. 

 
Fig. 2. Deriving the positions of grasp points (𝑔𝑡

1, 𝑔𝑡
2) at 

time 𝑡 from the high-level manipulation specification 

(𝑔0
1, 𝑔0

2, 𝒅) and control parameters (𝜃𝑡 , 𝑟𝑡 , 𝜑𝑡, 𝑎𝑡). Drop 

height ℎ is a fixed system parameter. Rotation around axis 

𝑇 (perpendicular to 𝒅′) progresses the manipulation. 



simulation frames, and we refer to a run of 12 frames as a 

segment. For the frames within a segment, we repeat the 

same deltas. Trajectories themselves are regularly regener-

ated during manipulation to incorporate shape observa-

tions, so in each manipulation session there exists a se-

quence of trajectories. A manipulation trajectory of 𝑘 

segments, at generation round 𝑖 in a manipulation session, 

is denoted as follows. 

𝑚𝑖 = ⟨∆𝜃𝑖,𝑗 , ∆𝑟𝑖,𝑗 , ∆𝜑𝑖,𝑗, 𝛥𝑎𝑖,𝑗
𝑥 , 𝛥𝑎𝑖,𝑗

𝑦
|𝑗 ∈ [1, 𝑘]⟩ (1) 

Note that 𝑎 denotes a point in the XY plane, and thus 

consists of two coordinates. 

2.2. Material Property Representation 

We let 𝑃 = {𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛, 𝑏𝑒𝑛𝑑, 𝑠𝑡𝑟𝑒𝑡𝑐ℎ, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠} 

represent the set of material properties under consideration. 

We denote the actual value of 𝑝 ∈ 𝑃 as 𝑞𝑝, and represent 

knowledge about property 𝑝 ∈ 𝑃 at segment 𝑖 as �̂�𝑖
𝑝

=

(𝑐𝑖
𝑝

, 𝑤𝑖
𝑝

), where 𝑐𝑖
𝑝

and 𝑤𝑖
𝑝

 define the centre and width 

of a truncated continuous uniform distribution on the [0,1] 

interval as follows: 

𝑈[𝑚𝑎𝑥(𝑐𝑖
𝑝

−𝑤𝑖
𝑝

,0),𝑚𝑖𝑛(𝑐𝑖
𝑝

−𝑤𝑖
𝑝

,1)]
(2) 

Hence material knowledge is represented as the material 

property value lying within a specified range. Absence of 

knowledge can be expressed as (𝑐𝑖
𝑝

= 0.5, 𝑤𝑖
𝑝

= 1.0) , 

whereas absolute certainty about a property’s value can be 

expressed with 𝑤𝑖
𝑝

= 0.0. 

2.3. Neural Network 

The neural network consists of encoder, prediction, and 

decoder modules. We omit description of the architecture 

here, but note that it closely follows [4], expect that the 

layer count in the prediction module is reduced to 5. 

The compound network takes as input 1) shape obser-

vations in mesh format, 2) manipulation trajectories, and 

3) material property knowledge, and outputs shape predic-

tion in probabilistic mesh format. For each vertex 𝑣 in the 

cloth mesh, the net outputs tuple ⟨𝜇𝑥
𝑣 , 𝜇𝑦

𝑣 , 𝜇𝑧
𝑣 , 𝜎𝑥

𝑣 , 𝜎𝑦
𝑣 , 𝜎𝑧

𝑣⟩ 

defining a multivariate normal distribution with means 

𝜇𝑥
𝑣 , 𝜇𝑦

𝑣 , 𝜇𝑧
𝑣  and a diagonal covariance matrix with values 

𝜎𝑥
𝑣 , 𝜎𝑦

𝑣, 𝜎𝑧
𝑣 on its diagonal. 

3. Data Generation & Network Training 

We generate a set of manipulation examples using the 

ARGUS cloth simulator [6]. The scenario we test here is 

folding a T-shirt approximately in two from left to right 

using a dual-armed manipulator. With the T-shirt laid out 

flat on a work surface, we set 𝑔0
1, 𝑔0

2 to grasp the T-shirt 

by the top corner of the left sleeve and the bottom left cor-

ner of the T-shirt body. Displacement vector 𝒅 is set to 

point rightwards, and its length is tuned so that performing 

manipulation with fixed control input 𝑚𝑡 =

(𝛥𝜃𝑡 , 𝛥𝑟𝑡 , 𝛥𝜑𝑡 , 𝛥𝑎𝑡
𝑥 , 𝛥𝑎𝑡

𝑦
) = (1,0,0,0,0)  results in the 

shirt being folded approximately in two. For each 

manipulation example, the control sequence 𝑚 and mate-

rial properties 𝑞𝑝, 𝑝 ∈ 𝑃  are randomised and recorded. 

ARGUS uses high-dimensional specifications of bend-

ing/stretching stiffness. For simplicity, we define a basic 

anisotropic material, and let our bending/stretching stiff-

ness parameters act as multipliers on this fabric specifica-

tion. We denote the elements of each manipulation exam-

ple as follows: 𝑠𝑖 denotes to the 𝑖th shape in a shape se-

quence (i.e. the shape at segment 𝑖), 𝑚𝑖  denotes to the 

manipulation input at segment 𝑖, and 𝑞 denotes the ma-

terial properties for the example. Manipulation examples 

are shown in Figure 1. 

We train the neural network end-to-end on batches of 

manipulation examples. Ranges for all material properties 

are normalised to the [0,1] range. During batch generation, 

we randomly generate instances of material property 

knowledge �̂�𝑝 = (𝑐𝑝, 𝑤𝑝) from the actual property val-

ues 𝑞𝑝 as follows. 

𝑤𝑝 = 𝑅(0,1)2       𝑐𝑝 = 𝑞𝑝 +
𝑅(−𝑤𝑝 , 𝑤𝑝)

2
(3) 

Here 𝑅(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)  uniformly generates a random 

value in [𝑙𝑜𝑤, ℎ𝑖𝑔ℎ]. This results in a property knowledge 

representation that is true for the example, and varies in its 

level of uncertainty. Material input is constant over seg-

ments, so we omit the segment index. The starting segment 

for each example in a batch is randomised in order to learn 

to predict form any point in the trajectory. Training loss is 

the negative log-likelihood. Weights are updated using the 

SignSGD update rule [7], with automatic learning rate ad-

justment. 

4. Trajectory Planning 

A manipulation session starts with generation of the in-

itial manipulation trajectory. We then execute the first seg-

ment, observe the resulting cloth shape, and regenerate the 

remainder of the trajectory. This process repeats every seg-

ment, until the release point of the (then-current) trajectory 

is reached, at which point the cloth is released and left to 

settle. During trajectory generation, we run multiple in-

stances of the generation process in parallel. This produces 

a set of candidate solutions, from which we select the so-

lution with the best residual loss. Below we explain the 

process in more detail. 

Given shape 𝑠𝑖 at the start of segment 𝑖, goal shape 𝑠∗, 

and material property information �̂�𝑖 = ⟨(𝑐𝑖
𝑝

, 𝑤𝑖
𝑝

)|𝑝 ∈ 𝑃⟩, 

we generate a 𝑘-step manipulation sequence 𝑚𝑖 for pro-

ducing 𝑠∗ from 𝑠𝑖 as follows. We assume to have some 

initial sequence 𝑚𝑖
𝑖𝑛𝑖𝑡  of length (segment count) 𝑏 ≥ 𝑘, 

which may be randomly initialised or initialised from a 

preceding step of the process. For the initial trajectory, we 

use the default trajectory ⟨𝑚𝑖,𝑗 = (2,0,0,0,0)|𝑗 ∈ [1, 𝑏]⟩ 

as basis, and add Gaussian noise independently for each 

instance of the trajectory generation process. When regen-

erating the trajectory, we start with the preceding trajectory 



minus its first segment (which was executed), and again 

add Gaussian noise independently for each instance of the 

generation process. The number of segments in the manip-

ulation sequence will be automatically adjusted within 

range [1, 𝑏] by the generation process, so 𝑏 should be 

set with some leeway. For the initial trajectory, we set 𝑏 =

25. For subsequent generation rounds, we set 𝑏  to the 

length of the preceding trajectory plus 5.  

We set up the neural network with the number of passes 

through its prediction module set to 𝑏. We input 𝑠𝑖, �̂�𝑖, 

and 𝑚𝑖 into the network, and perform forward propaga-

tion to obtain a sequence of probabilistic shape predictions 

�̂�𝑖,1:𝑏
𝑚 = ⟨�̂�𝑖,𝑗

𝑚|𝑗 ∈ [1, … , 𝑏]⟩. We calculate the planning loss 

as follows. 

𝐿𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔(�̂�𝑖,1:𝑏
𝑚 , 𝑠∗) = 𝑀𝑆𝐸(�̂�𝑖,𝑢

𝑚 , 𝑠∗) + 𝛽 ∙ 𝐿𝑎𝑐𝑡(𝑚) (4) 

𝑢 = {
argmin

𝑘
[𝜃𝑖,𝑘 ≥ 180]   𝑖𝑓  𝜃𝑖,𝑏 ≥ 180

𝑞                    𝑒𝑙𝑠𝑒
(5) 

Here 𝑀𝑆𝐸  is the mean squared error, 𝜃𝑖,𝑘  is the 

value of 𝜃 at segment 𝑘 (i.e. the sum of all ∆𝜃 up to 

segment 𝑘), 𝐿𝑎𝑐𝑡  is a loss promoting smooth, forward 

progressing trajectories, and 𝛽  is a system parameter 

balancing the loss terms. 𝑀𝑆𝐸 here ignores the 𝜎𝑥,𝑦,𝑧 

elements of the probabilistic shape prediction, using the 

𝜇𝑥,𝑦,𝑧 variables as regular coordinates.  

By backpropagating the planning loss through the net-

work to the manipulation inputs, we obtain gradients for 

all elements of 𝑚𝑖. We update 𝑚𝑖 on basis of these gra-

dients, using the rProp- update rule [8]. We repeat this up-

date procedure until 𝑚𝑖 stabilises. As noted, multiple ini-

tialisations of 𝑚𝑖 are optimised in parallel, and we select 

the solution that minimises the residual planning loss. 

Note that the planning loss selects one shape �̂�𝑖,𝑢
𝑚  from 

�̂�𝑖,1:𝑏
𝑚  for the 𝑀𝑆𝐸 calculation. The selected shape is the 

shape obtained right after the segment where the 𝜃 angle 

(which tracks progress along the trajectory arc) reaches 

180°, i.e. the shape following release of the cloth. Where 

this point is reached depends on the control input, and can 

therefor change as the control input is updated. Segments 

after the cloth release point are meaningless, so we truncate 

them from the final solution. Hence, the number of seg-

ments in the returned solution is adjusted automatically. 

We evaluate trajectory generation for various levels of 

knowledge about the cloth material, varying 𝑤𝑝 from 0.1 

to 1.0. For each case tested, 𝑐𝑝 is set to a random value 

drawn uniformly from [𝑞𝑝 − 𝑤𝑝 2⁄ , 𝑞𝑝 + 𝑤𝑝 2⁄ ] . Goal 

shapes are sourced from the training data set. Figure 3 

shows results. For low uncertainty (𝑤𝑝 = 0.1), the median 

error is 6.9mm. Although the difference is slight, mean and 

median error increase with 𝑤𝑝 , indicating that material 

property knowledge contributes to trajectory generation 

accuracy. We also observe that higher uncertainty pro-

duces a larger spread of error values. 

5. Material Estimation 

After manipulating the cloth for 𝑖 ≥ 1 steps, we can 

estimate the material property information, using the ma-

nipulation history 𝑚0:𝑖−1 = ⟨𝑚𝑗|𝑗 ∈ [0, 𝑖)⟩  and the se-

quence of shape observations 𝑠0:𝑖  obtained over the 

course of that history. The procedure is similar to trajectory 

generation, but instead of fixing material property input 

and optimising the control inputs to maximise similarity 

between predicted outcome and goal shape, we fix the con-

trol input 𝑚0:𝑖−1, and optimise the material knowledge in-

put �̂�𝑖  to maximise compatibility between the predicted 

shape sequence and the observed shape sequence. 

If we have no preceding estimate of �̂�𝑖, as may often be 

the case when 𝑖 = 1, we initialise �̂�𝑖  to the “no infor-

mation” valuation, i.e. �̂�𝑖 = (𝑐𝑖
𝑝

, 𝑤𝑖
𝑝

) = (0.5, 1.0), 𝑝 ∈ 𝑃. 

Otherwise, we initialise with the previous estimate. In both 

cases we apply Gaussian noise to the initialisation. 

We set up the prediction network with the number of 

passes through the prediction module set to 𝑖. We run pre-

diction with 𝑠0  as state input, 𝑚0:𝑖−1  as control input, 

and current material estimate �̂�𝑖 as material information 

input. This yields a sequence of probabilistic shape predic-

tions �̂�1:𝑖
𝑚 . We then calculate the material estimation loss 

as the negative log-likelihood of the observed sequence 

w.r.t. the predicted sequence: 

 

Fig. 3. Left: accuracy of trajectory planning for various lev-

els of material uncertainty. Unit: millimetres. Error is meas-

ured as mean distance between goal position and obtained 

position over all vertices in the mesh. Numbers at top of 

graph indicate outliers. The same 𝑤𝑝 value is used for all 

material properties. Right: example manipulation outcomes. 



𝐿𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(�̂�1:𝑖
𝑚 , 𝑠1:𝑖) = 𝑁𝐿𝐿(�̂�1:𝑖

𝑚 , 𝑠1:𝑖) (6) 

By backpropagating the estimation loss through the net-

work to the material inputs, we obtain gradients for all el-

ements of �̂�𝑖. We update �̂�𝑖 on basis of these gradients, 

using the rProp- update rule [8]. We repeat this procedure 

until �̂�𝑖 stabilises. As before, multiple initialisations are 

optimised in parallel, and we finally select the candidate 

solution that minimises the residual estimation loss. 

We evaluate estimation ability by replaying manipula-

tion examples from the training data set, and running ma-

terial estimation with the manipulation history and shape 

observation history after each manipulation segment. Ta-

ble 1 reports quantitative results of estimation after the fi-

nal segment, as mean, standard deviation, and median of 

‖𝑐𝑝 − 𝑞𝑝‖ and 𝑤𝑝 , and failure rates. The value of 𝑐𝑝 

lies near 𝑞𝑝 on average and the 𝑤𝑝  is fairly well con-

strained. One problem we observe is that for cases where 

𝑐𝑝  closely approximates 𝑞𝑝 , 𝑤𝑝  can drop to zero (i.e. 

the system overshoots to zero when a small 𝑤𝑝 would be 

appropriate). Figure 4 shows examples of estimation de-

velopment over two cases. Note that not all manipulation 

trajectories allow identification of all material properties; a 

manipulation that is not affected much by a given property 

will not be informative with regard to that property. 

Probabilistic representation of material properties allows 

the system to properly express such absence of knowledge. 

6. Conclusions & Future Work 

We proposed a cloth manipulation system capable of 

generating manipulation trajectories and inferring material 

properties during manipulation. We showed that good ac-

curacy is obtained for both functionalities. However, the 

impact of material knowledge in our test case is small, lim-

iting potential trajectory planning accuracy gains from ma-

terial inference. We plan to explore more complex folding 

scenarios in which material properties have a larger impact. 

A limitation of the results presented here is that trajectory 

generation and material estimation are evaluated sepa-

rately. The next steps for this work will be to integrate 

these processes to operate in parallel, and integrate the sys-

tem with robot hardware. 
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Fig. 4. Examples of iterative material estimation. Dotted 

black line: 𝑞𝑝. Shaded area: estimated region, (𝑐𝑝 and 

𝑐𝑝 ± 𝑤𝑝 2⁄  marked with coloured lines). All material prop-

erties normalised to the [0,1] range. 

Table 1: Material estimation results (mean, SD, median). 

𝑁 = 50 Bend Friction Stretch Thickness 

‖𝑐𝑝 − 𝑞𝑝‖ 
.061 (.053) 

median: .044 

.043 (.034) 

median: .034 

.049 (.033) 

median: .044 

.044 (.032) 

median: .037 

𝑤𝑝 
.28 (.18) 

median: .27 

.29 (0.17) 

median: .28 

.28 (.17) 

median: .25 

.25 (.16) 

median: .24 

Failure* 8% 2% 2% 0% 

* Failure criterion: ‖𝑐𝑝 − 𝑞𝑝‖ > 0.1 & 𝑐𝑝 ∉ [𝑐^𝑝 − 𝑤^𝑝 ⁄ 2, 𝑐^𝑝 + 𝑤^𝑝 ⁄ 2].  


